If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 6x2 + -7x + 20 = 0 Reorder the terms: 20 + -7x + 6x2 = 0 Solving 20 + -7x + 6x2 = 0 Solving for variable 'x'. Begin completing the square. Divide all terms by 6 the coefficient of the squared term: Divide each side by '6'. 3.333333333 + -1.166666667x + x2 = 0 Move the constant term to the right: Add '-3.333333333' to each side of the equation. 3.333333333 + -1.166666667x + -3.333333333 + x2 = 0 + -3.333333333 Reorder the terms: 3.333333333 + -3.333333333 + -1.166666667x + x2 = 0 + -3.333333333 Combine like terms: 3.333333333 + -3.333333333 = 0.000000000 0.000000000 + -1.166666667x + x2 = 0 + -3.333333333 -1.166666667x + x2 = 0 + -3.333333333 Combine like terms: 0 + -3.333333333 = -3.333333333 -1.166666667x + x2 = -3.333333333 The x term is -1.166666667x. Take half its coefficient (-0.5833333335). Square it (0.3402777780) and add it to both sides. Add '0.3402777780' to each side of the equation. -1.166666667x + 0.3402777780 + x2 = -3.333333333 + 0.3402777780 Reorder the terms: 0.3402777780 + -1.166666667x + x2 = -3.333333333 + 0.3402777780 Combine like terms: -3.333333333 + 0.3402777780 = -2.993055555 0.3402777780 + -1.166666667x + x2 = -2.993055555 Factor a perfect square on the left side: (x + -0.5833333335)(x + -0.5833333335) = -2.993055555 Can't calculate square root of the right side. The solution to this equation could not be determined.
| -2xy-2y-2x-2=0 | | 450000-22000.00x=-155000.0+12000.00x | | 4x-10+7x-8=180 | | a-b+8c=d | | 5(x-8)+6(x+6)=35 | | 7(2w-23)=3w+10 | | 7(w+8)=5w-4 | | 3a-14=2(a+1)+16a+1 | | 4x-7=2(2x-7) | | 2(10x-4)=4(5x-2) | | 8(x+7)=13x+11 | | -3500+60x=-90x | | -6.2q=-30.8-1.8q | | 17x-32=x+128 | | 6n^3-8n^2= | | 18lnx=34 | | 9p^2=-81p | | a^2+13a+30=0 | | 6m-2=4n | | -x^2-6x+27=0 | | 2m-5=-6n | | 35000.00+1680.00x=220650 | | 2x^2+8x-1=x | | 18x-7=x+85 | | 9(x-4)=9x-36 | | 500+0.35x=2.50 | | -6n-5=2m | | 500+0.35x= | | 500+0.35x=500 | | 9x-4=9(x-1) | | b(b+3)=0 | | -3m+1=8n |